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Abstract. While some public transit data publishers only provide a
data dump – which only few reusers can afford to integrate within their
applications – others provide a use case limiting origin-destination route
planning api. The Linked Connections framework instead introduces a
hypermedia api, over which the extendable base route planning algorithm
“Connections Scan Algorithm” can be implemented. We compare the cpu
usage and query execution time of a traditional server-side route planner
with the cpu time and query execution time of a Linked Connections
interface by evaluating query mixes with increasing load. We found that,
at the expense of a higher bandwidth consumption, more queries can be
answered using the same hardware with the Linked Connections server
interface than with an origin-destination api, thanks to an average cache
hit rate of 78%. The findings from this research show a cost-efficient way
of publishing transport data that can bring federated public transit route
planning at the fingertips of anyone.
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1 Introduction

The way travelers want route planning advice is diverse: from finding journeys
that are accessible with a certain disability [2], to taking into account whether
the traveler owns a (foldable) bike, a car or a public transit subscription, or
even calculating journeys with the nicest pictures on social network sites [8].
However, when presented with a traditional route planning http api taking origin-
destination queries, developers of e.g. traveling tools are left with no flexibility
to calculate journeys other than the functions provided by the server. As a
consequence, developers that can afford a larger server infrastructure, integrate
data dumps of the timetables (and their real-time updates), into their own system.
This way, they are in full control of the algorithm, allowing them to calculate
journeys in their own manner, across data sources from multiple authorities.

When publishing departure-arrival pairs (connections) in chronologically
ordered pages – as demonstrated in earlier work [4] – route planning can be
executed at data integration time by the user agent rather than by the data
publishing infrastructure. This way, the Linked Connections (lc) framework1

1 http:// linkedconnections.org
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allows for a richer web publishing and querying ecosystem within public transit
route planners. It lowers the cost for reusers to start prototyping – also federated
and multimodal – route planners over multiple data sources. Furthermore, other
sources may give more information about a certain specific vehicle that may be
of interest to this user agent. It is not exceptional that route planners also take
into account properties such as fares [5], wheelchair accessibility [2] or criminality
statistics. In this paper, we test our hypothesis that this way of publishing is
more lightweight: how does our information system scale under more data reuse
compared to origin-destination apis?

The paper is structured in a traditional way, first describing state of the art,
then introducing more details on the Linked Connections framework, to then
describe the evaluation’s design, made entirely reproducible, and discuss our
open-source implementation. Finally, we elaborate on the results and conclusion.

2 State of the art

The General Transit Feed Specification (gtfs)2 is a framework for exchanging
data from a public transit agency to third parties. It is – at the time of writing – the
de-facto standard for describing and exchanging transit schedules. It describes the
headers of several CSV files combined in a ZIP-file. Using a calendar and calendar
exceptions, both periodic as aperiodic transit schedules can be described. gtfs
also describes the geographic shape of trips, fare zones, accessiblity, information
about an agency, and so forth. We provided URIs to the terms in the gtfs
specification through the Linked gtfs3 vocabulary. Reusing these gtfs files,
route planners exist in software as a service platforms such as Navitia.io, in end-
user applications such as CityMapper, Ally or Google Maps, or as open-source
software, such as Open Trip Planner or Bliksemlabs RRRR. It is also possible a
that an agency, such as the Dutch railway company, the SNCB or the Deutsche
Bahn, expose a route planner over http themselves.

Data dumps and query apis can be seen as two extremes on the Linked
Data Fragments (ldf)4 axis. Triple Pattern Fragments – similarly to Linked
Connections [4] – already defined a way to publish an rdf dataset only through
its triple patterns [10]. This moves the evaluation of all Basic Graph Patterns –
and by extension sparql queries – to the client, reducing cpu load on the server.

In route planners, not sparql queries but Earliest Arrival Time queries
(eat) [9] need to be able to be solved. This is a question involving a time of
departure, a departure stop and an arrival stop, expecting the earliest possible
arrival time at the destination. More complex route planning questions exist,
such as the Minimum Expected Arrival Time (meat) [6] or multi-criteria profile
queries [1,5,11]. The Connection Scan Algorithm (csa) is an approach for planning
that models the timetable data as a directed acyclic graph [6,9]. By topologically
sorting the graph by departure time, the shortest path algorithm only needs to
2 https:// developers.google.com/ transit/ gtfs/ reference
3 base URI: http://vocab.gtfs.org/terms#
4 http:// linkeddatafragments.org
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scan through connections within a limited time window to solve an eat query.
csa can be extended to solving problems where it also keeps the number of
transfers limited, as well as calculating routes with uncertainty [6]. The ideas
behind csa can scale up to large networks by using multi-overlay networks [9].

3 Linked Connections

In this section, we design our information system for public transport data, called
the Linked Connections framework. As our datasets need to be interoperable
with other data published on the Web, we choose http as our uniform interface.
We allow cross origin resource sharing and enable cache header to indicate when
we expect a document to change. In order to document our identifiers using this
uniform interface as well, rdf is chosen as a knowledge representation model.
We further only define the hypermedia controls needed in each document as well
as the vocabularies to be used.

To solve the eat problem using csa, timetable information within a certain
time window needs to be retrievable. Other route planning questions need to select
data within the same time window, and solving these is expected to have similar
results5 Instead of exposing an origin-destination api or a data dump, a Linked
Connections server paginates the list of connections in departure time intervals
and publishes these pages over http. Each page contains a link to the next and
previous one. In order to find the first page a route planning needs, the document
of the entry point given to the client contains a hypermedia description on how
to discover a certain departure time. Both hypermedia controls are expressed
using the Hydra vocabulary6.

The base entities that we need to describe are connections, which we doc-
umented using the lc Linked Data vocabulary7. Each connection entity – the
smallest building block of time schedules – provides links to an arrival stop and a
departure stop, and optionally to a trip. It contains two literals: a departure time
and an arrival time. Linked gtfs can be used to extend a connection with public
transit specific properties such as a headsign, drop off type or fare information.
Furthermore, it also contains concepts to describe transfers and their minimum
change time. For instance, when transfering from one railway platform to another,
Linked gtfs can indicate that that the minimum change time from one stop to
another is a certain number of seconds.

In the proof of concept built for this paper available at http:// linkedconnections.
org , we implemented this hypermedia control as a redirect from the entry point
to the page containing connections for the current time. Then, on every page, the
description can be found of how to get to a page describing another time range.In
order to limit the amount of possible documents, we only enable pages for each

5 Also preprocessing algorithms [11] scan through an ordered list of connections to, for
example, find transfer patterns [1].

6 http://www.hydra-cg.com/ spec/ latest/ core/
7 http://semweb.mmlab.be/linkedconnections#
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X8 minutes, and do not allow pages describing overlapping time intervals. When
a time interval is requested for which a page does not exist, the user-agent will
be redirected to a page containing connections departing at the requested time.
The same page also describes how to get to the next or previous page. This way,
the client can be certain about which page to ask next, instead of constructing a
new query for a new time interval.

A naive implementation of federated route planning on top of this interface
is also provided, as a client can be configured with more than one entry point.
The client then performs the same procedure multiple times in parallel. The
connections streams are merge sorted as they are downloaded. A Linked Data
solution is to ensure that the client knows how to link a stop from one agency to
a stop from another.

4 Evaluation design

We implemented different components in JavaScript for the Node.js platform. We
chose JavaScript as it allows us to use both components both on a command-line
environment as well as in the browser.
CSA.js A library that calculates a minimum spanning tree and a journey, given

a stream of input connections and a query9

Server.js Publishes streams of connections in JSON-LD, using a MongoDB to
retrieve the connections itself10

Client.js Downloads connections from a configurable set of servers and executes
queries11

gtfs2lc A tool to convert existing timetables as open data to the Linked Con-
nections vocabulary12

We set up 2 different servers, each connected to the same MongoDB database
which stores all connections of the Belgian railway system for October 2015:
1. a Linked Connections server with an NGINX proxy cache in front, which
adds caching headers configured to cache each resource for one minute13 and
compresses the body of the response using gzip; 2. a route planning server which
exposes an origin-destination route planning interface instead using the csa.js
library14.

These tools are combined into different set-ups:
Client-side route planning The first experiment executes the query mixes by

using the Linked Connections client. Client caching is disabled, making this

8 X is a configurable amount
9 https:// github.com/ linkedconnections/ csa.js

10 https:// github.com/ linkedconnections/ server.js
11 https:// github.com/ linkedconnections/ client.js
12 https:// github.com/ linkedconnections/ gtfs2lc
13 The Belgian railway company estimates delays on its network each minute.
14 The route planning server uses the CSA.js library to expose a route planning api

on top of data stored in a MongoDB. The code is available at https:// github.com/
linkedconnections/ query-server
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simulate the lc without cache set-up, where every request could originate
from an end-user’s device.

Client-side route planning with client-side cache The second experiment
does the same as the first experiment, except that it uses a client side cache,
and simulates the lc with cache set-up.

Server-side route planning The third experiment launches the same queries
against the full route planning server. The query server code is used which
relies on the same CSA.js library as the client used in the previous two
experiments.

In order to have an upper and lower bound of a real world scenario, the first
approach assumes every request comes from a unique user-agent which cannot
share a cache, and has caching disabled, while the second approach assumes one
user-agent does all requests for all end-users and has caching enabled. Different
real world caching opportunities – such as user agents for multiple end-users in a
software as a service model, or shared peer to peer neighborhood caching [7] –
will result in a scalability in-between these two scenarios.

We also need a good set of queries to test our three set-ups with. The iRail
project15 provides a route planning api to apps with over 100k installations on
Android and iPhone [3]. The api receives up to 400k route planning queries per
month. As the query logs of the iRail project are published as open data, we
are able to create real query mixes from them with different loads. The first mix
contains half the query load of iRail, during 15 minutes on a peak hour on the first
of October. The mix is generated by taking the normal query load of iRail during
the same 15 minutes, randomly ordering them, and taking the half of all lines. Our
second mix is the normal query load of iRail, which we selected out of the query
logs, and for each query, we calculated on which second after the benchmark
script starts, the query should be executed. The third mix is double the load of
the second mix, by taking the next 15 minutes, and subtracting 15 minutes from
the requested departure time, and merging it with the second mix. The same
approach can be applied with limited changes for the subsequent query mixes,
which are taken from the next days’ rush hours. Our last query mix is 16 times
the query load of iRail on the 1st of October 2015. The resulting query mixes
can be found at https:// github.com/ linkedconnections/ benchmark-belgianrail .

These query mixes are then used to reenact a real-world query load for three
different experiments on the three different architectures. We ran the experiments
on a quad core Intel(R) Core(TM) i5-3340M cpu @ 2.70GHz with 8GB of RAM.
We launched the components in a single thread as our goal is to see how fast
cpu usage increases when trying to answer more queries. The results will thus
not reflect the full capacity of this machine, as in production, one would run the
applications on different worker threads.

Our experiments can be reproduced using the code at https:// github.com/
linkedconnections/ benchmark-belgianrail . There are three metrics we gather with
these scripts: the cpu time used of the server instance (http caches excluded), the
bandwidth used per connection, and the query execution time per lc connection.

15 https:// hello.irail.be
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For the latter two, we use a per-connection result to remove the influence of
route complexity, as the time complexity of our algorithm is O(n) with n the
total number of connections. We thus study the average bandwidth and query
execution time needed to process one connection per route planning task.

5 Results

Figure 1 depicts the percentage of the time over 15 minutes the server thread was
active on a cpu. The server cpu time was measured with the command pidstat
from the sysstat package and it indicates the server load. The faster this load
increases, the quicker extra cpus would be needed to answer more queries.

q lc lc + c Q server
0.5 4.61% 2.44% 4.95%
1 4.97% 2.32% 5.62%
2 7.21% 3.50% 10.41%
4 11.23% 5.39% 21.37%
8 17.69% 7.98% 35.77%

12 20.34% 9.38% 70.24%
16 28.63% 11.71% 97.01%

Fig. 1: Server cpu usage under increasing query load shows that the Linked
Connections server is more cost-efficient: more queries can be answered on one
core.

When the query load is half of the real iRail load on October 1st 2015, we
can see the lowest server load is the lc set-up with client cache. About double
of the load is needed by the lc without client cache set-up, and even more is
needed by the query server. When doubling the query load, we can notice the
load lower slightly for lc with cache, and the other two raise slightly. Continuing
this until 16 times the iRail query load, we can see that the load of the query
server raises until almost 100%, while lc without cache raises until 30%, while
with client cache, 12% is the measured server load.

In Figure 2, we can see the query response time per connection of 90% of the
queries. When the query load is half of the real iRail load on October 1st 2015,
we notice that the fastest solution is the query server, followed by the lc with
cache. When doubling the query load, the average query execution time is lower
in all cases, resulting in the same ranking. When doubling the query load once
more, we see that lc with client cache is now the fastest solution. When doubling
the query load 12 times, also the lc without client cache becomes faster. The
trend continues until the the query server takes remarkably longer to answer 90%
of the queries than the Linked Connections solutions at 16 times the query load.



q lc lc + c Q-server
0.5 0.319 0.211 0.130
1 0.269 0.165 0.125
2 0.266 0.177 0.151
4 0.273 0.177 0.188
8 0.302 0.211 0.255

12 0.389 0.307 0.539
16 0.649 0.369 3.703

Fig. 2: 90% of the journeys will be found with the given time in ms per connection
under increasing query load.

The average bandwidth consumption per connection in bytes shows the price
of the decreased server load as the bandwidth consumption of the lc solutions
are three orders of magnitude bigger: lc is 270B, lc with cache is 64B and
query-server is 0.8B. The query server only gives one response per route planning
question that is small. lc without client cache has a bandwidth that is three
orders of magnitude bigger than the query server. The lc with a client cache has
an average bandwidth consumption per connection that is remarkably lower. On
the basis of these numbers we may conclude the average cache hit-rate is about
78%.

6 Conclusion

This paper introduced the Linked Connections framework for publishing queryable
public transit data. We measured and compared the raise in query execution time
and cpu usage between the traditional approach and Linked Connections. We
could have hypothesized that we would find the origin-destination api approach
to give faster response times, with a higher server cpu load that will increase even
faster when the number of queries increase. We indeed achieved a better cost-
efficiency : when the query-interface becomes saturated under an increasing query
load, the lightweight lc interface only reached 1/4th of its capacity, meaning
that the same load can be served with a smaller machine, or that a larger amount
of queries can be solved using the same server. As the server load increases, the
lc solution even give faster query results.

These result are strong arguments in favor of publishing timetable data in
cacheable fragments instead of exposing origin-destination query interfaces when
publishing data for maximum reuse is envisioned. The price of this decreased
server load is however paid by the bandwidth that is needed, which is three
orders of magnitude bigger. When route planning advice needs to be calculated
while on for example a mobile phone network, network latency, which was not



taken into account during the tests, may become a problem when the cache of the
device is empty. An application’s server can however be configured with a private
origin-destination api, which in its turn is a consumer of a Linked Connections
dataset, taking the best from both worlds.

Our goal was to enable a more flexible public transport route planning
ecosystem. While even personalized routing is now possible, we also lowered the
cost of hosting the data, and enabled in-browser scripts to execute the public
transit routing algorithm. Furthermore, the query execution times of queries
solved by the Linked Connections framework are competitive. Until now, public
transit route planning was a specialized domain where all processing happened
in memory on one machine. We hope that this is a start for a new ecosystem of
public transit route planners.
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